Introduction
Camel Aggregator提供開發人員能夠將大量訊息合成一個的功能。假設你的系統會接受外來通知,並將內容寫進資料庫中;一次連線寫一筆資料會比較快,還是透過一次連線寫入五筆資料快呢? 正常來說,一次連線寫入五筆同屬性資料會是比較快的。它與Throttler的最大區別在於,Throttler限制了client的請求,而Aggregator則是收集起來一次“後送”。因此,如果使用Aggregator,你的程式必需要有對應的處理方式。
我將透過HTTP GET請求/events/{id}做為範例,說明如何使用Aggregator去將單位時間內的請求,以{id}去分組並Aggregate成各別分組訊息。本篇文章中使用到兩個RouteBuilder,分別為RestRouteBuilder與AggregatorGroupRouteBuilder。RestRouteBuilder負責REST核心相關設定,可參考先前文章。接下來直接說明AggregatorGroupRouteBuilder。
(程式碼可參考link)
AggregatorGroupRouteBuilder
package org.tonylin.practice.camel.aggregator; import static com.google.common.base.Preconditions.checkState; import org.apache.camel.builder.RouteBuilder; import org.apache.camel.processor.aggregate.GroupedExchangeAggregationStrategy; public class AggregatorGroupRouteBuilder extends RouteBuilder { private final static String GET_EVENTS = "GET_EVENTS"; private Object eventHandler; private int period = 500; public AggregatorGroupRouteBuilder(Object eventHandler) { this.eventHandler = eventHandler; } public void setPeriod(int period) { this.period = period; } @Override public void configure() throws Exception { checkState(eventHandler!=null, "Can't find eventHandler"); rest("/events/{id}").get().route().id(GET_EVENTS) .aggregate(new GroupedExchangeAggregationStrategy()) .header("id") .completionInterval(period) .bean(eventHandler).endRest(); } }
以下是在configure中的幾個重點:
- aggregate(new GroupedExchangeAggregationStrategy()): 使用GroupedExchangeAggregationStrategy去做aggregate,aggregate的內容為Exchange。如果要加入條件限制,是以Exchange去操作。
- header(“id”): 與aggregate一起使用,代表以header id去分組。在這範例中,指得就是event id。
- completionInterval(period): 以每period的單位時間去做aggregate。
- bean(eventHandler): 請求的處理者,必須要有能力處理aggregate後的訊息。
接下來讓我們透過單元測試展示效果。
Unit Test
測試有兩個目標,testGroupedExchange用以確認aggregate group後的結果,另外一個testCompletionInterval則是確認單位時間設定的作用。以下為程式碼主要結構,主要測試程式碼稍後做說明:
package org.tonylin.practice.camel.aggregator; import static com.google.common.base.Preconditions.checkState; import java.util.Arrays; import java.util.List; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; import org.apache.camel.Exchange; import org.apache.camel.Handler; import org.apache.camel.RoutesBuilder; import org.apache.camel.test.junit4.CamelTestSupport; import org.apache.http.HttpResponse; import org.apache.http.client.HttpClient; import org.apache.http.client.methods.HttpGet; import org.apache.http.impl.client.HttpClientBuilder; import org.junit.Test; import org.tonylin.practice.camel.rest.RestRouteBuilder; public class AggregatorGroupRouteBuilderTest extends CamelTestSupport { private RestHandler hander = new RestHandler(); private HttpClient client = HttpClientBuilder.create().build(); @Override protected RoutesBuilder[] createRouteBuilders() throws Exception { AggregatorGroupRouteBuilder aggregatorGroupRouteBuilder = new AggregatorGroupRouteBuilder(hander); aggregatorGroupRouteBuilder.setPeriod(500); return new RoutesBuilder[] { new RestRouteBuilder(), aggregatorGroupRouteBuilder }; } @Test public void testGroupedExchange() throws Exception { // skip } @Test public void testCompletionInterval() throws Exception { // skip } }
此測試中的RestHandler程式碼如下,它會透過GROUPED_EXCHANGE取得aggregator處理後的內容,並根據header id儲存到map中,供測試程式碼做assertion。除此之外,在這裡使用CountDownLatch了去確認有收到預期訊息數量:
public static class RestHandler { private Map<String, List<Exchange>> requestData = new ConcurrentHashMap<String, List<Exchange>>(); private CountDownLatch countDownLatch; @SuppressWarnings("unchecked") @Handler public void handle(Exchange exchange) { List<Exchange> groupExchanges = exchange.getProperty(Exchange.GROUPED_EXCHANGE, List.class); String id = groupExchanges.get(0).getIn().getHeader("id", String.class); requestData.put(id, groupExchanges); if( countDownLatch != null ) countDownLatch.countDown(); } public Map<String, List<Exchange>> getRequestData(){ return requestData; } public void expectNum(int num) { countDownLatch = new CountDownLatch(num); } public void waitCompletion(int timeout) throws InterruptedException { checkState(countDownLatch!=null); countDownLatch.await(timeout, TimeUnit.MILLISECONDS); } public void clear() { requestData.clear(); } }
首先讓我說明testGroupedExchange。測試程式碼中,送了四個訊息,其中包含了三組不同id;這樣的請求,我們預期RestHandler中,總共會收到三組訊息,其中id 123那組,應包含兩個訊息:
private HttpResponse requestWithEventId(String id) { try { HttpGet httpGet = new HttpGet("http://localhost:8080/events/" + id); return client.execute(httpGet); } catch( Exception e ) { throw new RuntimeException(e); } } @Test public void testGroupedExchange() throws Exception { // given request event id List<String> eventIds = Arrays.asList("123", "123", "456", "789"); hander.expectNum(3); // when List<HttpResponse> responses = eventIds.parallelStream().map(this::requestWithEventId).collect(Collectors.toList()); // then responses.forEach(response->{ assertEquals(200, response.getStatusLine().getStatusCode()); }); hander.waitCompletion(1000); Map<String, List<Exchange>> requestData = hander.getRequestData(); assertEquals(3, requestData.size()); assertEquals(2, requestData.get("123").size()); assertEquals(1, requestData.get("456").size()); assertEquals(1, requestData.get("789").size()); }
從上述程式碼中,可以發現hander.waitCompletion(1000)是放在確認response之後;所以client只要將訊息發送到aggregator後,就會拿到response code,並不會等到全部處理結束才回去。 接著是testCompletionInterval。這裡我直接透過請求相同id兩次,並分兩輪送出。這樣做可以確認aggregator有做到根據completionInterval的分批效果:
private void requestTwiceWithId(String id) throws Exception { // request event {id} twice List<String> eventIds = Arrays.asList(id, id); hander.expectNum(1); List<HttpResponse> responses = eventIds.parallelStream().map(this::requestWithEventId).collect(Collectors.toList()); responses.forEach(response->{ assertEquals(200, response.getStatusLine().getStatusCode()); }); hander.waitCompletion(1000); // confirm request result Map<String, List<Exchange>> requestData = hander.getRequestData(); assertEquals(1, requestData.size()); assertEquals(2, requestData.get("123").size()); // clear first request data hander.clear(); assertTrue(hander.getRequestData().isEmpty()); } @Test public void testCompletionInterval() throws Exception { requestTwiceWithId("123"); requestTwiceWithId("123"); }
Camel Aggregator其實提供了很多細部操作,你也可以根據自身需求做AggregationStrategy;但時間有限,請容我以後有機會再分享。
Library Info (Gradle Config)
以下是我在寫這篇文章時,所使用的libraries版本:
ext { camelVersion='2.23.1' nettyAllVersion='4.1.34.Final' guavaVersion='27.1-jre' log4jVersion='1.2.17' slf4jVersion='1.7.26' httpClientVersion='4.5.7' } dependencies { compile group: 'org.apache.camel', name: 'camel-core', version: "$camelVersion" compile group: 'org.apache.camel', name: 'camel-netty4-http', version: "$camelVersion" compile group: 'org.apache.camel', name: 'camel-http-common', version: "$camelVersion" compile group: 'org.apache.camel', name: 'camel-netty4', version: "$camelVersion" compile group: 'io.netty', name: 'netty-all', version: "$nettyAllVersion" compile group: 'com.google.guava', name: 'guava', version: "$guavaVersion" compile group: 'log4j', name: 'log4j', version: "$log4jVersion" compile group: 'org.slf4j', name: 'slf4j-api', version: "$slf4jVersion" runtime group: 'org.slf4j', name: 'slf4j-log4j12', version: "$slf4jVersion" testCompile group: 'org.apache.camel', name: 'camel-test', version: "$camelVersion" testCompile group: 'org.apache.httpcomponents', name: 'httpclient', version: "$httpClientVersion" testCompile 'junit:junit:4.12' }
留言
張貼留言