跳到主要內容

CompletableFuture - Carefully avoid transition task from one thread to another. It costs.

Problem

這個問題我使用以下範例來說明:

private ExecutorService es = Executors.newFixedThreadPool(2);
@Test
public void transitionTaskOfCallback(){
	CompletableFuture.supplyAsync(()->{
		return new Response();
	}, es)
	.thenAcceptAsync(response->{
		System.out.println(response);
	}, es);
}

這段程式透過supplyAsync將工作送給es去執行,當執行完畢後,會再透過thenAcceptAsync把後續處理交給es執行;或許你的程式執行起來,可以很順利地拿到你要的結果,但這裡做了白工。

由於這兩段都使用了async的方式,也都是把工作交由es去執行。假如es中有多個thread,這可能會造成額外的thread context switch;因為第一個工作與第二個工作並不一定會在同一個thread上執行。

How to resolve?

首先你必須要搞清楚,你到底在做什麼.. 假如你是很單純的在supplyAsync中做些計算,然後callback是要針對計算結果做處理,那幹嘛需要多此一舉把它宣告成async的寫法呢? 只要改成以下寫法,就可以讓你維持原本的Thread繼續執行:

@Test
public void fixTransitionTaskOfCallback(){
	CompletableFuture.supplyAsync(()->{
		return new Response();
	}, es)
	.thenAccept(response->{
		System.out.println(response);
	});
}

但假如你的使用情況像之前文章中,會將Blocking工作送到另外一個Thread,接著透過compose串接,就要考慮使用Async方式去延續工作:

@Test
public void testSendAsync(){
	CompletableFuture<Response> sendAsync = CompletableFuture.supplyAsync(()->{
		dumpCurrentThreadName("supplyAsync");
		return launchTaskWithAuxThread(()->new BlockingJob().invoke());
	}, es)
	.thenCompose((CompletableFuture<Response> responseReceived)->{
		dumpCurrentThreadName("thenCompose");
		return responseReceived;
	})
	.thenApplyAsync((Response x)->{
		dumpCurrentThreadName("thenApply");
		return x;
	}, es);
 
	sendAsync.join();
}

上面的是我在Java8上實做的範例。如果以作者的範例來說,可以參考我在Java11做的範例程式碼。它使用了一個共享的變數responseReceived;當Blocking工作結束後,使用responseReceived.completeAsync去串接thenApply,這樣可以讓工作的執行回到共用的ExecutorService:

public static class BlockingJob2 {
	private CompletableFuture<Response> responseReceived;
	public BlockingJob2(CompletableFuture<Response> responseReceived) {
		this.responseReceived = responseReceived;
	}
	public void invoke() {
		try {
			dumpCurrentThreadName("before blocking job");
			Thread.sleep(2*1000);
			// io blocking job and get response
			responseReceived.completeAsync(()->new Response(), es);
		} catch( Exception e ) {
			// log
		} finally {
			dumpCurrentThreadName("after blocking job");
		}
	}
}
 
public static CompletableFuture<Response> send2(){
	return CompletableFuture.supplyAsync(()->{
		dumpCurrentThreadName("supplyAsync");
 
		CompletableFuture<Response> responseReceived = new CompletableFuture<>();
		launchTaskWithAuxThread(()->{
			new BlockingJob2(responseReceived).invoke();
		});
		return responseReceived;
	}, es)
	.thenCompose((CompletableFuture<Response> responseReceived)->{
		dumpCurrentThreadName("thenCompose");
		return responseReceived;
	})
	.thenApply((Response x)->{
		dumpCurrentThreadName("whenComplete: " + x.getClass().getName());
		return x;
	});
}

async寫法帶來的是thread的控制性;sync則是因為減少context switch而帶來的則是較好的效能。要選擇哪一種方式,一定要先確定好你要的是什麼。

Reference

留言

這個網誌中的熱門文章

解決RobotFramework從3.1.2升級到3.2.2之後,Choose File突然會整個Hand住的問題

考慮到自動測試環境的維護,我們很久以前就使用java去執行robot framework。前陣子開始處理從3.1.2升級到3.2.2的事情,主要先把明確的runtime語法錯誤與deprecate item處理好,這部分內容可以參考: link 。 直到最近才發現,透過SeleniumLibrary執行Choose File去上傳檔案的動作,會導致測試案例timeout。本篇文章主要分享心路歷程與解決方法,我也送了一條issue給robot framework: link 。 我的環境如下: RobotFramework: 3.2.2 Selenium: 3.141.0 SeleniumLibrary: 3.3.1 Remote Selenium Version: selenium-server-standalone-3.141.59 首先並非所有Choose File的動作都會hang住,有些測試案例是可以執行的,但是上傳一個作業系統ISO檔案一定會發生問題。後來我透過wireshark去比對新舊版本的上傳動作,因為我使用 Remote Selenium ,所以Selenium會先把檔案透過REST API發送到Remote Selenium Server上。從下圖我們可以發現,在3.2.2的最後一個TCP封包,比3.1.2大概少了500個bytes。 於是就開始了我trace code之路。包含SeleniumLibrary產生要送給Remote Selenium Server的request內容,還有HTTP Content-Length的計算,我都確認過沒有問題。 最後發現問題是出在socket API的使用上,就是下圖的這支code: 最後發現可能因為開始使用nio的方式送資料,但沒處理到尚未送完的資料內容,而導致發生問題。加一個loop去做計算就可以解決了。 最後我有把解法提供給robot framework官方,在他們出新的版本之前,我是將改完的_socket.py放在我們自己的Lib底下,好讓我們測試可以正常進行。(shutil.py應該也是為了解某個bug而產生的樣子..)

第一次寫MIB就上手

SNMP(Simple Network Management Protocol)是用來管理網路設備的一種Protocol,我對它的認識也是從工作接觸開始。雖說是管理網路設備,但是主機、電源供應器、RAID等也都可以透過它來做管理。如果你做了一個應用程式,當然所有的操作也都可以透過SNMP來完成,不過可能會很痛苦。前陣子遇到一個學弟,它告訴我說:「我可能不會想寫程式。」為什麼? 因為這是他痛苦的根源。 在這篇文章中,不是要告訴你SNMP是什麼,會看這篇文章的大哥們,應該已經對SNMP有些認識了。 是的!主題是MIB(Management information base)! 對於一個3th-party的SNMP oid,有MIB可以幫助你去了解它所提供的資訊是什麼,且可以對它做什麼操作。最近我運氣很好剛好做到關於修改MIB的工作,也讓我順便了解一下它的語法,接下來我要交給大家MIB的基礎認識。 smidump 我並非使用什麼高強的Editor去編寫MIB,我僅透過Nodepad++編輯和smidump編譯而已。smidump是Kay教我使用的一個將MIB module轉成樹狀結構或oid列表的工具,唯一的缺點是不會告訴你哪一行打錯。當然有錢直接買編輯樹狀結構的工具就可以不需要了解語法了! 安裝 在Ubuntu上可先輸入smidump確認是否安裝,如果沒安裝可透過apt-get install libsmi2ldbl安裝。(CentOS可以透過yum install libsmi) root@tonylin:~/multi-boot-server# smidump The program 'smidump' is currently not installed. You can install it by typing: apt-get install libsmi2ldbl 使用 透過下面兩行指令,就可以將mib file產生出對應的tree與oid列表的檔案。也可以透過這個結果確認MIB是不是你想要的。 smidump -f tree example1.mib > xtree.txt smidump -f identifiers example1.mib > xiden.txt 如果有參考其它檔案要加上p的參數: smidum...

Windows DLL - 32-bit dll with 64-bit driver

前言 在64-bit作業系統上所使用的驅動程式,一定是64-bit,然而應用程式卻可能是32或64-bit。當32-bit應用程式傳值給驅動程式時是有可能會發生溢位的。主要原因是32與64-bit指標所佔用記憶體長度的不同。接下來我將透過Reference 1中的程式PhyMem,來告訴大家問題在哪與如何修改。(最後改完的程式碼恕我不提供) PhyMem介紹 這是一個中國人寫的程式。作用與WinIO相同,可以存取windows的io port與physical memory。這個程式包含pmdll、driver與test三個專案,分別產生dll、sys與exe。作者僅提供32-bit的版本,但只要修改編譯設定就可以讓它產生出64-bit的artifact。但如同我前言所說,如果你是32-bit的dll要存取64的sys該怎麼辦? 可以規定User在64-bit的OS用64-bit的應用程式就好了阿! 但是將一個32-bit應用程式改為64-bit的有這麼簡單嗎? 除此之外,中間傳遞的資料型態也會影響到正常功能。 設定driver專案 我開發環境是VC2008與DDK6000,下載Reference1的專案是無法直接編譯的,可以參考我的設定去修改編譯、連結參數。輸出檔可以看個人需求,根據32或64命名,或者是用同一個檔案名稱。 32-bit C/C++ > 一般 > 其它Include目錄($(DDKROOT)為設定於環境變數的DDK安裝目錄): $(DDKROOT)\inc\ddk";"$(DDKROOT)\inc\api";"$(DDKROOT)\inc\crt";"$(DDKROOT)\inc\crt\gl";"$(DDKROOT)\inc\crt\sys" 連結器 > 一般 > 其它程式庫目錄: $(DDKROOT)\lib\wnet\i386。 連結器 > 資訊清單檔: 將產生資訊清單與UAC選擇否,因為這不適用於driver。 連結器 > 進階 > 隨機化的基底位置: 選擇預設。 64-bit Reference1僅提供32-bit設定。64-bit可在建置>組態管理員中,新增x64平台,而設定檔可從win32複製過來修...